On additivity of permitted sets

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

Winterschool on Abstract Analysis, Hejnice, 2009

・ロト ・日 ・ モ ・ ト モ ・ うへぐ

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

For $x \in \mathbb{T}$, let ||x|| be the distance from x to 0 (for $x \in \mathbb{R}$ we take the distance from x to the nearest integer).

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

For $x \in \mathbb{T}$, let ||x|| be the distance from x to 0 (for $x \in \mathbb{R}$ we take the distance from x to the nearest integer).

Definition

A set $X \subseteq \mathbb{T}$ is called

 an Arbault set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ∀x ∈ X ||a_nx|| → 0,

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

For $x \in \mathbb{T}$, let ||x|| be the distance from x to 0 (for $x \in \mathbb{R}$ we take the distance from x to the nearest integer).

Definition

A set $X \subseteq \mathbb{T}$ is called

- ▶ an Arbault set if there is an increasing sequence $\langle a_n : n \in \omega \rangle \in \omega^{\omega}$ s.t. $\forall x \in X ||a_n x|| \rightarrow 0$,
- a Dirichlet set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ||a_n x|| ⇒ 0 on X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

For $x \in \mathbb{T}$, let ||x|| be the distance from x to 0 (for $x \in \mathbb{R}$ we take the distance from x to the nearest integer).

Definition

A set $X \subseteq \mathbb{T}$ is called

 an Arbault set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ∀x ∈ X ||a_nx|| → 0,

a Dirichlet set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ||a_n x|| ⇒ 0 on X.

We denote $\mathcal{A} = \{X : X \text{ is an Arbault set}\}, \mathcal{D} = \{X : X \text{ is a Dirichlet set}\}.$

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

For $x \in \mathbb{T}$, let ||x|| be the distance from x to 0 (for $x \in \mathbb{R}$ we take the distance from x to the nearest integer).

Definition

A set $X \subseteq \mathbb{T}$ is called

 an Arbault set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ∀x ∈ X ||a_nx|| → 0,

a Dirichlet set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ||a_n x|| ⇒ 0 on X.

We denote $\mathcal{A} = \{X : X \text{ is an Arbault set}\}$, $\mathcal{D} = \{X : X \text{ is a Dirichlet set}\}$. Then $\mathcal{D} \subsetneq \mathcal{A} \subsetneq \mathcal{E}$ (\mathcal{E} is the σ -ideal generated by closed null sets).

We will work on the unit circle ("torus") $\mathbb{T} = \mathbb{R}/\mathbb{Z}$. Note: All results are valid also for \mathbb{R} .

For $x \in \mathbb{T}$, let ||x|| be the distance from x to 0 (for $x \in \mathbb{R}$ we take the distance from x to the nearest integer).

Definition

A set $X \subseteq \mathbb{T}$ is called

▶ an Arbault set if there is an increasing sequence $\langle a_n : n \in \omega \rangle \in \omega^{\omega}$ s.t. $\forall x \in X ||a_n x|| \rightarrow 0$,

a Dirichlet set if there is an increasing sequence (a_n : n ∈ ω) ∈ ω^ω s.t. ||a_n x|| ⇒ 0 on X.

We denote $\mathcal{A} = \{X : X \text{ is an Arbault set}\}$, $\mathcal{D} = \{X : X \text{ is a Dirichlet set}\}$. Then $\mathcal{D} \subsetneq \mathcal{A} \subsetneq \mathcal{E}$ (\mathcal{E} is the σ -ideal generated by closed null sets). $\dim_{\mathrm{H}}(X) = 0$ for every $X \in \mathcal{A}$

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

▲□ ▲ □ ▲ □ ▲ □ ● ● ●

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

History of permitted sets:

defined by J. Arbault in 1952 (for a different but similar family),

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

History of permitted sets:

- defined by J. Arbault in 1952 (for a different but similar family),
- Arbault (1952) proved that every countable set is permitted and provided an example of a perfect permitted set,

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

History of permitted sets:

- defined by J. Arbault in 1952 (for a different but similar family),
- Arbault (1952) proved that every countable set is permitted and provided an example of a perfect permitted set,
- N. Bari (1961) found a gap in his example,

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

History of permitted sets:

- defined by J. Arbault in 1952 (for a different but similar family),
- Arbault (1952) proved that every countable set is permitted and provided an example of a perfect permitted set,
- N. Bari (1961) found a gap in his example,
- ▶ J. Lafontaine (1968) showed that there is no perfect permitted set, but this proof contains a gap, too,

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

History of permitted sets:

- defined by J. Arbault in 1952 (for a different but similar family),
- Arbault (1952) proved that every countable set is permitted and provided an example of a perfect permitted set,
- N. Bari (1961) found a gap in his example,
- ▶ J. Lafontaine (1968) showed that there is no perfect permitted set, but this proof contains a gap, too,
- ▶ (1995 2000) examples of 'consistently uncountable' permitted sets,

Definition

A set $X \subseteq \mathbb{T}$ is *permitted* if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$.

Fact: For every $\langle a_n : n \in \omega \rangle$, $\{x \in \mathbb{T} : ||a_n x|| \to 0\}$ is a subgroup of \mathbb{T} .

Corollary

X is permitted iff X is A-additive, i.e. $X + Y \in A$ for every $Y \in A$.

History of permitted sets:

- defined by J. Arbault in 1952 (for a different but similar family),
- Arbault (1952) proved that every countable set is permitted and provided an example of a perfect permitted set,
- N. Bari (1961) found a gap in his example,
- ▶ J. Lafontaine (1968) showed that there is no perfect permitted set, but this proof contains a gap, too,
- ▶ (1995 2000) examples of 'consistently uncountable' permitted sets,
- ▶ P.E. (2004) proved that every permitted set is perfectly meager.

1. Is the existence of an uncountable permitted set provable in ZFC?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

- 1. Is the existence of an uncountable permitted set provable in ZFC?
- 2. Is every permitted set of strong measure zero?

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

- 1. Is the existence of an uncountable permitted set provable in ZFC?
- 2. Is every permitted set of strong measure zero?
- 3. Is $\{X \subseteq \mathbb{T} : X \text{ is permitted}\}$ a σ -ideal?

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$.

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$,

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$, 2. $\forall m \ \sum_{n} |z_{m,n}| \le k$.

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$, 2. $\forall m \ \sum_{n} |z_{m,n}| \leq k$. We say that $z \in \mathbb{Z}^{\omega \times \omega}$ is a bounded matrix if it is a *k*-bounded matrix for some $k \in \omega$.

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$, 2. $\forall m \ \sum_{n} |z_{m,n}| \leq k$. We say that $z \in \mathbb{Z}^{\omega \times \omega}$ is a bounded matrix if it is a *k*-bounded matrix for some $k \in \omega$.

For $a, b \in \omega^{\omega}$, $z \in \mathbb{Z}^{\omega \times \omega}$, we write $b = z \cdot a$ for $\forall m \ b_m = \sum_n z_{m,n} a_n$.

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$, 2. $\forall m \ \sum_{n} |z_{m,n}| \le k$. We say that $z \in \mathbb{Z}^{\omega \times \omega}$ is a bounded matrix if it is a *k*-bounded matrix for some $k \in \omega$.

For $a, b \in \omega^{\omega}$, $z \in \mathbb{Z}^{\omega \times \omega}$, we write $b = z \cdot a$ for $\forall m \ b_m = \sum_n z_{m,n} a_n$.

Theorem

Let $a, b \in \omega^{\omega}$ be increasing sequences, $\frac{a_n}{a_{n+1}} \to 0$. TFAE: 1. $A(a) \subseteq A(b)$,

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$, 2. $\forall m \ \sum_{n} |z_{m,n}| \le k$. We say that $z \in \mathbb{Z}^{\omega \times \omega}$ is a bounded matrix if it is a *k*-bounded matrix for some $k \in \omega$.

For $a, b \in \omega^{\omega}$, $z \in \mathbb{Z}^{\omega \times \omega}$, we write $b = z \cdot a$ for $\forall m \ b_m = \sum_n z_{m,n} a_n$.

Theorem

Let $a, b \in \omega^{\omega}$ be increasing sequences, $\frac{a_n}{a_{n+1}} \rightarrow 0$. TFAE:

- 1. $A(a) \subseteq A(b)$,
- 2. there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $b =^* z \cdot a$.

For $a \in \omega^{\omega}$ denote $A(a) = \{x : ||a_n x|| \to 0\}$. Let $k \in \omega$. We say that $z = \langle z_{m,n} : m, n \in \omega \rangle \in \mathbb{Z}^{\omega \times \omega}$ is a *k*-bounded matrix if 1. $\forall n \forall^{\infty} m \ z_{m,n} = 0$, 2. $\forall m \ \sum_n |z_{m,n}| \le k$. We say that $z \in \mathbb{Z}^{\omega \times \omega}$ is a bounded matrix if it is a *k*-bounded matrix for some $k \in \omega$. For $a, b \in \omega^{\omega}, z \in \mathbb{Z}^{\omega \times \omega}$, we write $b = z \cdot a$ for $\forall m \ b_m = \sum_n z_{m,n} a_n$.

Theorem

Let $a, b \in \omega^{\omega}$ be increasing sequences, $\frac{a_n}{a_{n+1}} \rightarrow 0$. TFAE:

- 1. $A(a) \subseteq A(b)$,
- 2. there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $b =^* z \cdot a$.

Denote $TS = \{a \in \omega^{\omega} : \frac{a_n}{a_{n+1}} \to 0\}$. Every Arbault set is included in a set of the form A(a) for some $a \in TS$.

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

For
$$a, b \in TS$$
 and $k \in \omega$, let
 $b <_k a \stackrel{\text{df}}{\equiv} (\exists k \text{-bounded matrix } z) \ b =^* z \cdot a$,
 $b < a \stackrel{\text{df}}{\equiv} (\exists \text{ bounded matrix } z) \ b =^* z \cdot a$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

For
$$a, b \in TS$$
 and $k \in \omega$, let
 $b <_k a \stackrel{\text{df}}{\equiv} (\exists k \text{-bounded matrix } z) \ b =^* z \cdot a,$
 $b < a \stackrel{\text{df}}{\equiv} (\exists \text{ bounded matrix } z) \ b =^* z \cdot a \equiv \exists k \ b <_k a.$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

For
$$a, b \in TS$$
 and $k \in \omega$, let
 $b <_k a \stackrel{df}{\equiv} (\exists k \text{-bounded matrix } z) \ b =^* z \cdot a,$
 $b < a \stackrel{df}{\equiv} (\exists \text{ bounded matrix } z) \ b =^* z \cdot a \equiv \exists k \ b <_k a.$
Fact: $<$ is a preorder.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

For
$$a, b \in TS$$
 and $k \in \omega$, let
 $b <_k a \stackrel{\text{df}}{\equiv} (\exists k \text{-bounded matrix } z) \ b =^* z \cdot a,$
 $b < a \stackrel{\text{df}}{\equiv} (\exists \text{ bounded matrix } z) \ b =^* z \cdot a \equiv \exists k \ b <_k a.$

Fact: < is a preorder.

Theorem

 $X \subseteq \mathbb{T}$ is permitted iff $X \subseteq \bigcap_{a \in D} A(a)$ for some open dense subset D of (TS, <).

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

For
$$a, b \in TS$$
 and $k \in \omega$, let
 $b <_k a \stackrel{\text{df}}{\equiv} (\exists k \text{-bounded matrix } z) \ b =^* z \cdot a,$
 $b < a \stackrel{\text{df}}{\equiv} (\exists \text{ bounded matrix } z) \ b =^* z \cdot a \equiv \exists k \ b <_k a.$

Fact: < is a preorder.

Theorem

 $X \subseteq \mathbb{T}$ is permitted iff $X \subseteq \bigcap_{a \in D} A(a)$ for some open dense subset D of (TS, <).

Fact: $\{D \subseteq TS : D \text{ is open dense}\}$ is a filter.

Corollary

A set $X \subseteq \mathbb{T}$ is permitted iff for every $a \in TS$ there exists a bounded matrix $z \in \mathbb{Z}^{\omega \times \omega}$ such that $X \subseteq A(b)$ where $b = z \cdot a$.

For
$$a, b \in TS$$
 and $k \in \omega$, let
 $b <_k a \stackrel{\text{df}}{\equiv} (\exists k \text{-bounded matrix } z) \ b =^* z \cdot a,$
 $b < a \stackrel{\text{df}}{\equiv} (\exists \text{ bounded matrix } z) \ b =^* z \cdot a \equiv \exists k \ b <_k a.$

Fact: < is a preorder.

Theorem

 $X \subseteq \mathbb{T}$ is permitted iff $X \subseteq \bigcap_{a \in D} A(a)$ for some open dense subset D of (TS, <).

Fact: $\{D \subseteq TS : D \text{ is open dense}\}$ is a filter.

Problem

Is $\{D \subseteq TS : D \text{ is open dense}\}$ a σ -filter?

▲□> < □> < □> □ ○Q()