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Notations

We will work on the unit circle (“torus”) T = R/Z.
Note: All results are valid also for R.

For x ∈ T, let ‖x‖ be the distance from x to 0
(for x ∈ R we take the distance from x to the nearest integer).

Definition

A set X ⊆ T is called

I an Arbault set if there is an increasing sequence 〈an : n ∈ ω〉 ∈ ωω s.t.
∀x ∈ X ‖an x‖ → 0,

I a Dirichlet set if there is an increasing sequence 〈an : n ∈ ω〉 ∈ ωω s.t.
‖an x‖ ⇒ 0 on X .

We denote A = {X : X is an Arbault set}, D = {X : X is a Dirichlet set}.
Then D ( A ( E (E is the σ-ideal generated by closed null sets).

dimH(X ) = 0 for every X ∈ A
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Permitted sets

Definition

A set X ⊆ T is permitted if X ∪ Y ∈ A for every Y ∈ A.

Fact: For every 〈an : n ∈ ω〉, {x ∈ T : ‖an x‖ → 0} is a subgroup of T.

Corollary

X is permitted iff X is A-additive, i.e. X + Y ∈ A for every Y ∈ A.

History of permitted sets:
I defined by J. Arbault in 1952 (for a different but similar family),
I Arbault (1952) proved that every countable set is permitted and provided

an example of a perfect permitted set,
I N. Bari (1961) found a gap in his example,
I J. Lafontaine (1968) showed that there is no perfect permitted set, but

this proof contains a gap, too,
I (1995 – 2000) examples of ‘consistently uncountable’ permitted sets,
I P.E. (2004) proved that every permitted set is perfectly meager.

Peter Eliaš On additivity of permitted sets



Permitted sets

Definition

A set X ⊆ T is permitted if X ∪ Y ∈ A for every Y ∈ A.

Fact: For every 〈an : n ∈ ω〉, {x ∈ T : ‖an x‖ → 0} is a subgroup of T.

Corollary

X is permitted iff X is A-additive, i.e. X + Y ∈ A for every Y ∈ A.

History of permitted sets:
I defined by J. Arbault in 1952 (for a different but similar family),
I Arbault (1952) proved that every countable set is permitted and provided

an example of a perfect permitted set,
I N. Bari (1961) found a gap in his example,
I J. Lafontaine (1968) showed that there is no perfect permitted set, but

this proof contains a gap, too,
I (1995 – 2000) examples of ‘consistently uncountable’ permitted sets,
I P.E. (2004) proved that every permitted set is perfectly meager.
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Peter Eliaš On additivity of permitted sets



Permitted sets

Definition

A set X ⊆ T is permitted if X ∪ Y ∈ A for every Y ∈ A.

Fact: For every 〈an : n ∈ ω〉, {x ∈ T : ‖an x‖ → 0} is a subgroup of T.

Corollary

X is permitted iff X is A-additive, i.e. X + Y ∈ A for every Y ∈ A.

History of permitted sets:
I defined by J. Arbault in 1952 (for a different but similar family),
I Arbault (1952) proved that every countable set is permitted and provided

an example of a perfect permitted set,
I N. Bari (1961) found a gap in his example,
I J. Lafontaine (1968) showed that there is no perfect permitted set, but

this proof contains a gap, too,
I (1995 – 2000) examples of ‘consistently uncountable’ permitted sets,

I P.E. (2004) proved that every permitted set is perfectly meager.
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Open problems

1. Is the existence of an uncountable permitted set provable in ZFC?

2. Is every permitted set of strong measure zero?

3. Is {X ⊆ T : X is permitted} a σ-ideal?
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Combinatorics of Arbault sets

For a ∈ ωω denote A(a) = {x : ‖an x‖ → 0}.

Let k ∈ ω. We say that z = 〈zm,n : m, n ∈ ω〉 ∈ Zω×ω is a k-bounded matrix if

1. ∀n ∀∞m zm,n = 0,
2. ∀m

P
n |zm,n| ≤ k.

We say that z ∈ Zω×ω is a bounded matrix if it is a k-bounded matrix for
some k ∈ ω.

For a, b ∈ ωω, z ∈ Zω×ω, we write b = z · a for ∀m bm =
P

n zm,n an.

Theorem

Let a, b ∈ ωω be increasing sequences, an
an+1

→ 0. TFAE:

1. A(a) ⊆ A(b),

2. there exists a bounded matrix z ∈ Zω×ω such that b =∗ z · a.

Denote TS =
˘
a ∈ ωω : an

an+1
→ 0

¯
.

Every Arbault set is included in a set of the form A(a) for some a ∈ TS .
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Characterization of permitted sets

Corollary

A set X ⊆ T is permitted iff for every a ∈ TS there exists a bounded matrix
z ∈ Zω×ω such that X ⊆ A(b) where b = z · a.

For a, b ∈ TS and k ∈ ω, let

b <k a
df≡ (∃k-bounded matrix z) b =∗ z · a,

b < a
df≡ (∃ bounded matrix z) b =∗ z · a ≡ ∃k b <k a.

Fact: < is a preorder.

Theorem

X ⊆ T is permitted iff X ⊆
T

a∈D A(a) for some open dense subset D of
(TS , <).

Fact: {D ⊆ TS : D is open dense} is a filter.

Problem

Is {D ⊆ TS : D is open dense} a σ-filter?
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Peter Eliaš On additivity of permitted sets


